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CONSTRUCTIVE CONTROL OF THE MOTION OF OSCILLATING SYSTEMS 
WITH DISCRETE AND DISTRIBUTED PARAMETERS* 

L.D. AKULENKO 

The problem of controlling the motion of mechanical systems over an 
asymptotically large but fixed time interval is considered. The 
controlled objects may include elements with discrete parameters 
(material points, rigid bodies, weightless springs, etc.)and oscillating 
components with distributed parameters (strings, rods, elastic beams and 
shafts, membranes, plates, cavities with stratified liquid, etc.), whose 
frequency spectrum is denumerably 'infinite. The controlling actions, 
whether kinematic or dynamic in nature, are assumed to be concentrated 
with respect to the space variables. They may be movable, applied to 
the absolutely rigid parts of the system and/or fixed at the boundaries 
of the distributed elements (boundary control). This kind of control 
is of value in applications. On the assumption that techniques of 
mathematical physics /l, 2/ or the method of moments /3, 4/ yield an 
infinite-dimensional control problem for the Fourier coefficients of the 
solution relative to a set of basis functions for the boundary-value 
problem, an asymptotic approach is proposed for constructing approximate 
controls and the resulting scheme for the approximate solution of the 
problem is shown to be legitimate. A specific problem is examined as an 
illustration - rotation of an elastic rod in the plane by a torque 
applied at its end. 

1. PretMMly assumptions and statement of the problem. As it is not our intention to 
study mechanical controlled systems in all their generality, attention will be confined to 
scalar control functions u(t) /4-g/. It is assumed that the Fourier coefficients -Ql U) 
of an unknown distribution Z(t, s), relative to a (given) basis (r*(x)} which is orthonormal 
with weight p(x), satisfy a denumerably infinite set of equations of the following form: 

S," + cQS( = a@, i = 0,1.2,...,n, . . . . tE[O,Tl 
0,<0,<0,~0,<...<w,<..., %#O 

z(t,x) = iz*‘(l)ri(~), ZEDC RP (ri, rth, =I f&j 

(1.1) 

The vector (P, s.) is treated as an element of denumerable-dimensional Euclidean space. 
The natural frequencies of the oscillations 01, i> 1, are assumed to be simple, and the 
influence parameters a; characterizing the efficiency of the control in the i-th mode do 
not vanish; dim D = p > 1. 

In the distributed oscillating systems encountered in practice, the frequencies oz, as 
functions of the discrete parameter i, may exhibit the following types of asymptotic behaviour 
as i-+00: 

1) 0*-T/i, CQ+,-aol-1/fi (gravitational waves in a cavity containing a homogeneous 
liquid with free surface or a discretely stratified liquid /9/J; 

2) 0; - i, oi+r - 01 - 1 (transverse waves in a string or elastic shaft; longitudinal 
waves in a distributed spring or elastic beam /4, 7/); 

3) 0:-)/P, o;+r- 01- i/i (gravitational-capillary or capillary waves in a cavity like 
that of case 1); 

4) 01 - is, c0;+1 - o[- i (transverse waves in an elastic rod or shaft /8/l. 
The initial values {sf", us'} of the variables {s,, I+), i > 0 (vi (t) 3 q’ (t)) at t=o 

are obtained in the standard way as the Fourier coefficients of the initial distributions of 
the displacements 2 (0. 2) and velocities 'a' (0. z), expanded in terms of the basis (Q(2)) 
generated by an appropriate selfadjoint boundary-value problem /l, 2/. These distributions 
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must 

from 
to a 

satisfy the boundary conditions at the initial time. 
The so-called finite control problem /4/ is as follows: construct a function 10 0) 
some admissible class W (w(t) E w) that will steer system (1.1) from state {sol vi01 
designated state {$', Q}, i > 0, at t=2’, T<m. The admissible class W is 

determined by such considerations as physical realizability and the existence or a 

sufficiently smooth solution z = z&.x). It is commonly assumed that w(t) is square inte- 
grable, i.e., w(t)= WC&IO, 2-1, and that the series (1.1) for the solution (2 (t, z), 2. (t, X)) 
is convergent in the norm of the energy space (the energy of the system must be finite for 
all tEtO,Tl,T<~f Il, 2, 5/. Thus, we have to solve the following two-point problem 
with respect to t: 
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si (0)=-Q', q(O) = ~0; s,(i") = Q, z+(T)= viT (f-2) 

Note that the terminal distribution functions of the displacements and the VelOCitieS 
defined by the coefficients {QT, VP) must satisfy the boundary conditions. In a more 
general case, the boundary conditions may stipulate the values of finitely or denumerable 
many functionals at t= T /‘I/; in particular, the boundary conditions may pertain to only 
some of the coefficients sir, vlT (iE I, where I is some index set). The following special 
cases are of obvious mechanical interest. 

1. o,=o and s,(T) = SOT, v*(T) = UJ, s* (T) = vi (T) = 0 - the system is brought as 
a whole to a state of motion; 2 ($3 x) = .%I (t) r0 (z), t > T, where s,(t) = sgT + vf (1 - T), with 
relative oscillations suppressed. If it is also required that the amplitude of the partial 
oscillations be such that APT = I(spT)" + (upT / wg*)'l'f~ # 0, the system will move as a whole 
and perform monochromatic oscillations at a frequency Of** 

2. If s*(T)=s*T but vt (T) 0 > 0) are arbitrary, this is the problem of "stiff" 
control; if it is required that AiT = 0 (i> 1, og =O), but s$, v0 T are arbitrary, this 
is the problem of suppression of relative oscillations. If SIT, vl*, i = 0, 1, 2, . . ., n, are pre- 
scribed,, this is known as an n-node approximation of the control problem: if n=O, i.e., 
only SJ, VI? are prescribed, this is the "coarse" formulation of the problem, since no 
attention is paid to the relative oscillations. But if a,,> 0, the control system is purely 
oscillatory. 

The controllability problem for a denumerable oscillating system (l.l), (1.2) in a finite 
time interval, with a finite number of control functions (in particular, one control w W), 
involves considerable theoretical difficulties /4-g/. The controls obtained are more often 
than not generalized functions. Instead, one can adopt a constructive approach to the 
corresponding approximate control problem: for example, one might require the terminal Con- 
ditions (1.2) to be satisfied only to within a prescribed error 0 (a) (0 < e< 1). 

In this paper we propose an approach to the approximate solution of the control problem 
over an asymptotically large time interval, determined by a small parameter e in the follow- 
ing way: 

tE [O, Tl, T = @F-r, E E (0, soi, @ = 0 (1) (1.3) 

The coefficients al (i&O) in (1.1) are of the order of unity relative to the parameter 
e (i.e., (al N 1); as i increases they may either decrease or increase, remaining bounded 
or not. The frequencies o, (i> 1) in (1.1) are also of order unity relative to E; the typical 
situation was described previously. The quantities so01 JJ and (so" -.s,~) may be asymp- 
totically large, but the amplitudes of the partial oscillations and the velocity v,O~T, i.e., 
the energy of the system, are of the order of unity. In S&I, we are making the following 
assumptions (w. = 0): 

Here Et (i> 0) are the total "energies" of the partials and Ez is the total "energy" 
of the system. 

Note that throughout the control process the values of sd(t), of(t)(i> 0) for vt E [O, Tl, 
where T N e-r, satisfy Condition (1.4), subject to an appropriate choice of the control 
function w WI. 

System (1.1) will be considered throughout the sequel in the case o0 = 0, a,.= 1 and 
interpreted as a denumerable set of linear Unidirectional oscillators (or two-dimensional 
pendulums on parallel axes) on a common base /6, 7/. A control force w (f) of kinematic or 
dynamic nature is applied to the base. In the first case so*' =W is the acceleration of a 
certain point of the base, in the second it is the acceleration of the system's centre of mass. 
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The controllability of a denumerable system of pendulums has been studied in /4-9/ and 
elsewhere. 

2. Approximate solution: motion of a denumerabte system of oscillators (penduZumsl with 
suppression of rezatiue osCi%tions. To fix our ideas (without much loss of generality) we 
shall consider the problem of steering system (1.1) at time t -= T (1.31 to a prescribed 
state of motion as a whole without relative oscillations, i.e., the terminal Conditions 11.2) 
and required motion at t 2 T are assumed to be 

S@ (T) = SOT f- O), ~0 (T) = ugT (=O)v ~2 (T) = Vi (T) = 0 (Xl) 

Vt > T, w (1) 5 0: su (t) = sgT + q,T (t - T), u, (1) = vgT 
si (t) = vi (1) zz 0 (i‘= 1, 2, . . ., IZ, . . .; T = CW) 

It may be assumed here that sOr = vOr = 0; this is achieved by transforming to variables 
so* = sg - SOT, vg *= vo - no T (and doing the same in the initial conditons). The required 
motion is then the rest state: z (t, X) = z' (t, 2) EZ 0, z E D, t > 2”. 

The required control w(t)E !v for Problem (1.11, (1.2), (2.1) is assumed to be a 
series 

where I?E 8, 
determined in 
obtained from 

m 

11’ = w (t, II) GZ G$ + 6, + X (~j sin 6I$ 3 bj COS O&f 
)=I 

(2.2, 

II = {Uj, bf}, i = 0, 1, . .‘., n, . . .; l-I = const 

is an unknown vector in aenumerable-dimensional Euclidean space la7 to be 
accordance with conditions (2.11. Note that a series of tvoe 12.2) can be 
the 

performance index 
expression for the optimal control of system (1.1) with an integral quadratic 
/4, 5, ?/: 

T 

I [w] = -+ s W*(t)&+ min, w @)E w c_ L, [O, T] 
0 lwl<- (2.3) 

Substituting the series (2.2) for w(t,n) into system (1.1) and integrating, using 

_- 

the initial Conditions (1.21, we obtain the following representation for the solution as a 
Cauchy problem: 

We have written out these expressions with the "principal" terms 0 (I le) and 0 (1) 
separated from the small perturbations 0 (8) for Vt E [O, Tl, T = 6%‘; the latter are 
represented by the terms si, Y* (i = 0, 1, . . .). In regard to this separation it should be 
noted that Vi (f, II) = Si’ (t, fl), i > 1, but V, ft, J$ # So'{& n). This representation depends on 
the assumption that the series representing St, Vi are convergent: 

The symbol 2’ means that the series omits terms with jzi (which are included in 
the principal terms). 



The denumerable 
Conditions (2.1) for 
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set of parameters n = {at,bi}, i> 0, is determined by the zero terminal 

representations (2.41, (2.5), which yield linear equations for n: 

si(T, n) =_O, Q(T, n)= 0, i -0,1,.. .,n,.-- (2.6) 

We will now solve system (2.6) approximately using the assumptions (see Sect.1) made 
concerning the order of magnitude of T, ai, oI, saO, Vi’ relative to 8. Consider the following 

system of equations, which is a "first approximation" of system (2.6) with respect to e, 

obtained by omitting terms assumed to be O(C): 

(2.7) 

This is a diagonal system of equations for {ai, bd, i 2 1; solving it, we obtain first 
approximations of the coefficients {a&'), b&Q} with respect to e. Substituting them into the 
first equation and combining the result with the second, we obtain a closed system of equations 

for (a,, b,). In sum we obtain the required values of the parameters Kl: 

a,(') ,= (6 / TB) (2s,O + u,OT + 4E), al(‘) = 2wls1” / @IT) 

b,(‘) = -(2 ,’ Ta) (3.~~~ + 2v,“T + Sg), b&l) = -2@ I (aiT) 
12.8) 

In view of our assumptions (1.4), it follows from these expressions that the coefficients 

at, bt 6 > 0) are of different orders of magnitude relative to e. If the series for E in 
(2.8) is convergent, we have 

e!j*' =O (es); b”’ a!*’ b!‘) = 0 (e), *,1,1 i > 1 (2.9) 

Substituting the values of IV) into (2.2), we obtain an expression for the control W, 
in the first approximation with respect to e: 

Similarly, an 
substituting 

V* (t, II) = 0. 

3. Error 
coefficients 

WC’) = w (1, ruq, 11 WC’) 11 = 0 (E), t E LO, ee-“I (2.10) 

approximate controlled tarjectory &@,I& ui(t, II)}, i)O, is obtained by 
nrn from (2.8) into (2.4) and omitting terms O(e), i.e., equating Sf (k n) = 

estimate and the vaZidity of the approxGmte sotution. Let us assume that the 
a&'), b&l) satisfy the following very "generous" sufficient conditions: 

o,s)oiai = O(i-8). vi+& = a(Wj, 8> 1 (3.1) 
Since as a rule oi =O(i"),x>O (see Sect.l), the first of Conditions (3.1) is more 
restrictive than the first condition in (2.8). Then the series (2.10) is uniformly convergent 
to a continuous function w(t, II(u), t E 10, @e-l], satisfying this same estimate. In practice, 
control functions of this kind can be approximated fairly well by digital or analogue devices. 
Theoretically speaking, however, the class of controls to(t,lI)E W (2.2) can be enlarged, 
so as to consider controls for which the functions {si (f, n(r)), u1 (t, II(*))}, i 2 0 (2.4) (as well 
as 12 0, x), z'(t,z)} /see (1.11/, and so on) are also admissible. 

We will now compute the error involved in replacing the control by its first approxi- 
mation ioc') (2.101, in terms of the values of s,, q at t = T. By (2.4)-(2.8), 

s< (T, II”‘) - Si (T, l-i”‘), vi (T, II”‘) = Vi (T, l’I”)) 

S,(T,P) = - 1 T .~[~Sinm,+~~(i-MS~j)] 

Iti 

V,(T,n"')=~,~[~((-cosm,J-~sin~~] (t=O) 

Si (T, II(*)) = 
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The coefficients a,(r), b,,(l) were defined in (2.8); when Si is differentiated with respect 
to T to get (3.2), they are treated as constants (only @1, @'i are differentiated; by (2.71, 
d@i,,laT = Oj, j). If the series occurring in the expressions for Si, V, (i> 1) in (3.2) 
are convergent - this is certainly the case if q",vjo decrease sufficiently rapidly as j 
increases - we obtain the following error estimates: 

1 si (T, rI"')I Q ect*3 1 c'i (T, rP') ( -< EC,', i ,=- u (3.3) 

The coefficients c?" depend on the initial values Si", Vi’, the natural frequencies 
WI (j > 1) and the influence coefficients aJ ci > oh as well as the parameter 8 - 1. 
Incidentally, the series in (3.2) are certainly convergent in various special cases in which 
the initial distributions of displacements s (0, x) and velocities s' (0, s) involve only a 
finite number of harmonics, i.e., AJ0 = 0 for j>N (N(W). If the initial relative 
displacements and velocities vanish (i.e., the distributed system is rigidly displaced), it 
follows from (3.2) that 

S, (T, II(l)) = v0 (T, I-P) = 0 (3.4) 
s1 (T, II(l)) = 0 (G), vi (T, II@)) = 0 (I?), i > 1 

In order to solve the initial problem approximately, in such a way as to determine the 
state variable z (t, 2) at t = T to within a preassigned degree of accuracy in some metric 
(e.g., uniform, weak or strong), we must ensure that the parameters c?" decrease suf- 
ficiently rapidly as i-too., In addition, a similar condition must be imposed on the 
Fourier coefficients st (t, II(l)), vi (t, II(l)) for Vt EE [O, Tl, so as to guarantee convergence 
(in the same norm) of the series for z(')(t,s) and its derivatives with respect to t, x: 

z(*) (t, I) = 2 si (t, n”‘) 7.i (x), ag ( g ) . . 

i=O 

For practical purposes, it is normally enough to guarantee convergence in the Hilbert or 
energy norm /l, 2, 4, 51. In the special case of initial distributions with a finite number 
of modes, the general value (2.5) and terminal value (3.2), (3.3) of the coefficients 81, v1 
may be estimated as follows: 

I sO I < eC* I s* I Q ec I % l/Oi’ 

IVol,<% Ivi I,<~claiV~*, t E IO, @e-l], E = const 

(3.6) 

If the quotients la; I/o1 decrease sufficiently rapidly as i increases, the "remainder" 
terms" St, Vt in the formulae for St* vi become small and may ultimately be omitted. The 

functions 2~) (t. z), sir, (t, s), Z&J (t, 4 etc. that result are e-close to the functions a(" (t, 
I), az~wt, azwsz etc. in the appropriate norms (see (3.5) ). A control (2.10) corresponding 
to this case will contain a finite number of terms of the series (2.2) (i<j<N). It may 
also be expected that the approximate solution will be e-close to the exact solution (in 
the same norms). 

Remark 1. The solution of the problem with non-vanishing terminal values 
i.e., A,'#O, i&i, is obtained from the above solution by substituting 

SiO - Si O - (siT cos ai + (viT/oi)sin UJi) (soO+ saO- soT) 

UIO - Yi" - (- Si T sin mi + (uiT/oi) co.3 (Di) oi (uoo -+ uf - u,T) 

sir, UiT, 

(3.7) 

Remark 2. The problem of suppressing relative oscillations or controlling them without 
allowing for so(T),",(T) may be solved by putting a:) = i$)=O in n(1) ; the other coefficients 

.!I), b$‘) (i > 1) are given by (2.8), (3.7). 
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Remark 3. If it is desired to halt the system as a whole, i.e., vo(T)=AiT=O (without 

allowing for s%(T)), one must put a, (1) = 0, at) = u,,O/T, and the coefficients a!'), bi*) are computed 

from (2.8). To bring the system to a given position ,s,,~ with non-fixed velocity D%(T) and 

suppression of relative oscillations, the requisite conditions are (2.8) for .f), b,!*), i > 1, 

and in addition 

%F' = (3[T3) (s%@ + u,,@‘T + ZF,), b2) = - ag)T 

Analogous arguments yield approximate solutions for the control problem under other 
terminal conditions that lead to a diagonal system for (ai, Vi)* i >/ 1. 

Remark 4. The parameter II = {ai, bi), i 2 0, can be approximated to higher order in the 

small parameter 8 by using (2.4)"(2.6) with St+ Vt evaluated at n values obtained in 

the previous stages of the recurrent procedure (k = 1, 2,. . .) : 

nlk+‘) = I@) -P-l (UIJ R, (T, IIck)), I+ = (ai, bifr (3.8) 

P-1 = Pt', d%t P =i 1, R, = (Si, V&)*; AI”+‘) - AI”’ =r 0 (ek+l) 

(ktl) 
a0 

cc= a(;’ f (S/Z’s) [2S, (T, Ilck)) - I’, (T, IIck)) T] 

bhk+l) =I bg) - (2/T%)[3S,(T,II(k))- I', (T,lI(kf)T ] 

WI) 
00 

_ =j,k’ zz 0 (,k+T, by) - @,k) =z 0 @k+*) 

Here P (Qi) is a 2x2' matrix representing rotation through the 
convergence of the scheme (3.8), estimates of the error in terms of 
control w (b, II(")) (2.21, the solution ~(~)(t,t) and its derivatives 
involve considerable difficulties and merit separate discussion. 

angle 4+_ As to the 
%< expressions for the 
(3.5) - all these problems 

Remark 5. Quite naturally, one finds that synthesis of the control w,= wS (T-t, s, u) is 
linear in the variables s = (a,,. sl. . . ., s,,)tr, v = (v,,, 4, . . ., u,,. . . .)tr. To a first approximation with 
respect to e, synthesis of the control by means of (2.2), (2.10), after substituting t--P 0, 
T-.+T-t,P-+r, ti-D”, gives 

wj’) = w!” (T - t, 8, u) E (3.9) 

Note that this control synthesis is singular at t-T - a characteristic situation for 
time-independent control problems. 

Remark 6. The above procedure for constructing approximate solutions and the accompany- 
ing error estimates are valid in more general systems of type (1.1). For example, the system 
may include a finite number or denumerably many groups of variables with multiple frequencies 

01 of finite multiplicity kJ<k*, k’<w, where w is a vector-valued control of the appropri- 
ate (sufficiently high) dimensionality and the controllability conditions are satisfied for 
each subgroup, 

Remrk 7. In applications one is sometimes interested in other settings of the control 
problem; for example, it may be required that the control be optimally fast. The major 
condition imposed on such controls is that they permit suppression of relative oscillations. 
Approaches similar to that outlined above, based on asymptotic separation of variables,may be 
applicable in the case when T/T, = O(L+). 

4. A?mtysis of Cmtm%zb%e motion in the first upminwrtion. By (2.4), (2.8), (3.61, 
variation of the oscillating variables si, vi gives, to within 0 (e) (i ) 1) : 

Sr) (t) = A$” (T) COS (Cpi - ‘pi’), co.9 ‘pi 0 = sjOjAjO (4.1) 
c$’ (t) = - w~A? (z) sin (gpi - ~4'). sin 'pi0 x vi”/(aiA,O) 

A:” (z) = Ai (1 - T), Ae’ (z) = AZ0 (I- r), t/T = z E [0, I] 

The behaviour of 80, 0% - the variables determining the motion of the system as a whole 
- is described to within an absolute error 0 (e) by the expressions 

S%(l) (t) = so* (1 - 379 + 275) + VO%T (1 - z)' + 2g7 (1 - 3r + W (4.21 
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this 
this 

I@ (t) = -6 (s,"/T) z (1 - z) + voo (1 - 42 + 3za) + 2 (EjT)(1.-- 6z + 677 

We first consider the global behaviour of so@), u,(l) with relative error 0 (a). To 
end we normalize S@(l) relative to so0 = 0 (EC-')) and PO@' relative to s,*/T = 0 (1); 
gives, again to within an error O(s), 

spho* E s,(*) (T) = f - 39 + 29 + y7 (I - q 

~o(l)~/s~a 5 .,i*, (T) = -6T (1 - z) 7" Y (2 - 4%. -I- 39) 

v = z$Tko" = 0 (i), ‘q*, (I) = uo@) (1) = 0 

(4.3) 

It follows from (4.3) that if v< -3 or Y > --"/a there exists a point of in- _ _ ^ _ _. 
flection Ze E (0,l) of so(*) (x) as a function of z (z, = '13 (ZY +- Y) (Y -I" 2)-A). At this point 
vg(*j (7) has an extremum: if v< -3 it is a maximum, if v > --S/s - a minimum. For all 
its simplicity, the family (4.3) (with v as parameter, z&J*) (0) = v) is quite interesting, 
since it characterizes the quality of the control of the distributed system moving as a whole. 
Thus, when v< -3 one obtains supercontrol with respect to s&*' and us(*); when v > --'I, 
the acceleration, i.e., WC') changes sign, and the function u&*)(z) is not monotone; when 
v>O the function @)'(z) is again non-monotone and vo(*) (-e) changes sign. The 
corresponding characteristic curves are shown in Fig.1 (s,(*)(?)) and Fig.2 ( ?I,(*)@)) (with 
the v value indicated for each curve). 

Fig.1 Fig.2 

Fig.3 

We now investigate the variables se, v. with absolute error 0(e), It follows from 
(4.2) that if (T-8)~ 1, i.e., (1 --@we, then ski), me@' -e. If the time_elapsing till 
the end of the process is asymptotically large, (T- #)- l/l/& i.e., 1 -z = v'se, where 
0 E IO, PI, El* w 1, - we obtain (so0 - 0) 

sot~)/(~oo) E so* (0) = (3 -+ v) es 4 -t/euv - 2) 88 4 gel (4.4) 

p,cv~so~ S vo+ fe) = -2j/e (3 + V) 0 (6 = -2g/(~,7) 

If vsf: -3 and e is sufficiently small, so* (and so@)) varies strongly (by OV)). 
while v,* (and vo@') vary weakly (by 0(de)). For precision control to within 
one must allow for Q(j15) terms for (T- t)~-l/vC 

0 (sf 
The trajectory in the (so*, tioO') 

plane is approximately half of a strongly oblate parabola, corresponding to voLl(3 rt v) < 0. 
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If Y = -3 + I/&, where u-1, then to within 0 (e) 

so* (e) = $; (50 -+ 062 - MS), ug* (e) 3 0, 0 2 0 (4.5) 

The qualitative behaviour of so* (0) (4.5) for 0 N 1 (B-to) for different values 

(signs) of 6* o is shown in Fig.3. 

5. Controt of two-ddsnsiona~ rotations of a?z e&zstic rod. We consider the control of 
a straight inhomogeneous rod by a torque applied to its left end; the right end is free. The 

equations of motion may be derived by using d'lllembert's principle and the theorem on 
variation of the momentum; in the linear approximation 181 we obtain 

p (x) 24” -t- IEI (5) UT = --p (5) xv-, 0 < x < 1 (5.1) 
u (t, 0) = u' (t, 0) = 11" (t, I) = ZP (t, I) = 0 

\q(r)s[rrp'*(t) $ u"(t,x)]dx = M, M(t)cs M 
0 

u = u (h z), p, = g, (t), 0 < t .< T < 00, 0 <,<r .< 1 

Here u is the relative displacement of a point x on the neutral line of the rod, in a 
system rotating together with the tangent to the rod at x=0 (the point of application of 
the torque bf. The dots denote differentiation with respect to t, and primes, with respect 
to x, The rotation of the tangent about some fixed axis is represented by the angle cp. 
The linear density p(a) and bending rigidity El (3) are assumed to be sufficiently smooth, 
non-vanishing functions of r. The classes of controls IW (t) E M and solutions u = u(t,x)E 
U will be defined later. 

As in Sect.1, we can consider the control problem for system (5.1). It is desired, by a 
suitable choice of an admissible control MO), to transfer the system from an arbitrary 
prescribed state at time t =0 to a preassigned terminal state of rotation as a whole (with 
suppresssion of relative oscillations) at t = T: 

u (0, I) = fo (x), u' (0, 5) = go (z), cp (0) - 'PO, (p' (0) f 00 (5.2) 
u (T, z) = fr (I) (SO), u' (T, x) = gr (5) (~0) 

q(T) =rpT (= 0), v‘(T) = d' (= 0) 

It is assumed that the corresponding selfadjoint boundary-value problem for eigenvalues 
and eigenfunctions has been solved: 

[EI(cc)XX"l" - ?$p(.z) x = 0, x = x (s). 0 < 2 < 1 15.3) 
X (0) = X' (0) = X" (I) = xm (I) = 0 

h~{h,}, n=i,2, . . . . Oc&<h,< . . . <A,< . . ..k=O(n) 

x(x) E IX, (5)~ (x,, xi& = 5 Xn (4 KnW P (4 dx = hm 
0 

The solution of Problem (5.11, (5.2) for u&x) is obtained in terms of the complete 
orthonormal system of functions {X,(x)) (5.3) by the Fourier method /4, 7-g/: 

The equation of moments (4.l)may be reduced to the formE (0) u”(t, 0)= -M(t)using the 
equation of state and the boundary conditions; for given M (t) it can be written as a 
Volterra equation of the first kind in y = 'p": 

fd(t-r)v(r)dr=N(t)+F(t), tcz[O,T) (5.5) 
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uo(t,x)= ~X,,(x)(fnoeosm.,t + +sinw,,t) 

The reader should note the need to coordinate the classes of functions G(t), N(t) and 

F (t) occurring in Eq.(5.5) (see /IO/). 
Our approach leads to a control problem for the motion of a denumerable-dimensional 

system, described by differential Eq.(5.4) and integral Eq.(5.5). The technique of Sect.l-3 
is not immediately applicable to this problem. Nevertheless, the solution can be computed 
approximately by the semi-inversion method, treating the function y as the control and 
using the integral Eq.(5.5) to determine the required values of the torque &f(t) /a/: 

cp' = W, 0' = y, y (t) E r (5.6) 

8," f w,W, = --I"ny, t E IO, Tl, n > 1 

rp (0) = 'PO, 0 (0) = 00, 8, (0) = f,o, 9; (0) = g,o 
rp (2’) = @‘, w (2’) = 09’. 8, (T) = 8,’ (2’) = 0 

Problem (5.6) is formally the same as that considered in Sects.1, 2, and if TIT, - s-1 
(0 < E < 1, T, = Znio,, w12 - Ef&bW the approximate solution procedure and analysis of 
Sects.2-4 are applicable. The constructions and formulae for the case of a homogeneous rod 
may be found in /a/. The controlling torque M(t) computed from (5.5) is a more complicated 
function of t than (2.2) or (2.10). It involves the integral of the product of a function of 
that type and a kernel G(t - z) which is an almost-periodic function with the same fre- 
quency basis {w,}. As a result of the integration the function M(t) involves products of 
linear functions of t and quasiperiodic functions. 

We will now consider the direct computation of the control M(t). To do this, we 
introduce a new variable - the "absolute" displacement of a point on the rod, 4 = u + xv: 
this gives a controllable system for z /a/: 

p (z) d' + IEI (2) ~“1” = 0, z = z (t, x) = u (t, a?) + x’p (t) 

2 (E, 0) = Z’*(t, I) = 2“’ (t, Z) = 0, -Ef (0) I” (t, 0) = M (t) 

cp (t) = 2’ (t. 0). u (t, 5) = z (t, z) - x2’ (a 0) 

(5.7) 

The initial and terminal values of .Z may be computed on the basis of the "natural" Con- 
ditions (5.2) for u,cp and definition (5.7). These "generalized" conditions are 

2 (t, x) l&T = fb,!T (5) -t @*TX, z'(t, I) 10,r = g", T(s) Jr ~0, *x (5.8) 

Solution of problem (5.7) with initial Conditions (5.8), for a known function M (t)* 
can be reduced by separation of variables and the Fourier method to the construction of the 
system of eigenvalues and eigenfunctions of a selfadjoint boundary-value problem similar to 
(5.3): 

IEf fx) X”]” - h4P (x) x = 0, Ix = x (29, 0 < 5 g 1 (5.9) 
x (0) = X” (0) = X” (2) = xm (l) = 0 

hE{h,}, O=ko<&< .,. <&< .I. ?h,=O(n), n-+m 

XWE b&W), (X,, Xdp = S,,, n, m = 0, I, 2,. . .; X, =x/l/& 

Here the constant Jo has the sense of the moment of inertia of an absolutely rigid rod. 
Suppose that the system of eigenvalues &n} and a complete system of orthonormal functions 
(basis) {X,(z)} have been constructed (for a uniform rod, see /a/). Then the required 
solution Z&Z) is expressed as a Fourier series with coefficients 8, (t), n > 0: 
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The unknown functions 8, (t), n > 0, are found by solving a system of differential 
equations of type (1.3) with initial and final Conditions (1.4), (1.5) : 

19,” = Ml r/T, %” + q,*@,, = pnM (pn = X,’ (0)); (5.11) 

8, 10, T = 1/K ‘posy’ - t%jl x,’ (0) fp; T, 8, lo, T = pn) T = (f”. T, X,), 

The solution of the two-point problem with respect to t and the choice of admissible 
control M(t) proceed along the lines of Sects.2-4 above. In particular, for a uniform rod 

(p, EI = const) we can introduce non-dimensional arguments: t*= x11, E, = Qt, Q’ = El/(#); 

variables: z*(E,, z+) = z @-It*, X,1)/& z*' (t*, z*) = z’ (P-It,, s,Z)/(lQ); and controlling torque: 

M*.= M, (t*) = M (wt,) Il(EZ) ; finally, we obtain the solution (omitting the asterisk): 

X&,=2g+2!$ CL, X,) = Ll 
n n 

te J. = th a, h E {h,), 0 = a,, < al < . . . < a,, < . . . (5.12) 

a n+l = nn + n/4 + 0 (e-") 
t 

z&x)=3x (t-r)M(z)dz+ 
s 
0 

OD sh h, sin l*z + sin I,, sh b,,z 
t 

c b, (sh h, - sin h,) s 
sino,(t - T)M (z)dz 

n=* 0 

Now, setting M = M@)(t) (2.10), we obtain the required solutin to a first approxi- 
mation with respect to E, namely z!')(t,x), in the form of (3.5), where t E IO, Tl, T = l/e, 
0 < e < 1, 5 c IO, 11. If M(') (t) is a piecewise-smooth function, the series in formula 
(5.12) for 2 0, X) is uniformly convergent, since it is majorised by a real number 
sequence whose terms decrease as neS; the series for z'(t,x) is also absolutely and 
uniformly convergent, as a real sequence with terms 0 (ri"). Convergence of higher-order 
derivatives with respect to X and t requires a separate investigation; this may be done in 
a non-uniform metric /l, 2, 5/. 
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